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Objectives

We have developed a theory of control bifurcations. Loosely speaking a con-
trol bifurcation is a loss of linear stabilizability and as such they can be critical
to the success of a nonlinear control system.

Status of Effort

‘We have classified all control bifurcations through codimension two and have
studied how they can be stabilized using truly nonlinear feedbacks.

Accomplishments/New Finding

The concept of a control bifurcation grew out an AFOSR PRET project
to study the robust stabilization of axial flow compressors. Several versions of
the Moore Greitzer compressor model were used in this study. McCaughan {28
had studied the classical bifurcations that were present in the three dimensional
Moore Greitzer equations (MG3) [29] as the throttle and other parameters were
varied. Liaw and Abed [27) considered the throttle parameter as a control and
developed feedback laws to change the criticality of the primary Hopf bifurcation
in MG4. We realized that there was more than classical bifurcations in these
models, there was a new type of bifurcation, a control bifurcation. With this
support from AFOSR we studied such bifurcations. Our efforts have stimulated
other workers around the world and we now have some understanding of control
bifurcations in low codimensions.

A clssical bifurcation can occur in a parameterized family of differential or
difference equations as the parameter is varied. Consider the equations

z = f(x,ﬂ)

where the state z is n dimensional and, for simplicity, the parameter p is one
dimensional. The equilibria z, u are the solutions of the equation

0 = f(fl;,llf)-

This is n + 1 equations in n unknowns so typically there is a one parameter
family of equlibria z. = z.(1).

Two equilibria are topologically equivalent if there is a local homeomorphism
of the state space carrying one equlibrium and its local orbits to the other and
its local orbits while preserving the time direction of orbits but not necessarily
the exact time. A classical bifurcation occurs at an equilbrium which is not
topologically equivalent to its neighboring equilibria.

The linear approximating system at the u** equilbrium in displacement co-
ordinates is

z = F(p)z




where z = z — z() and

Fio) = Zaew,n).

The usual way that a classical bifurcation occurs is that one or more eigenvalues
of F(u) cross the imaginary axis as p is varied. To determine the simple ways
that this can occur, one uses the concept smooth equivalence and its resulting
Poincaré normal forms. Two equilibria are smoothly equivalent if there is a
local diffeomorphism of the state space carrying one equlibrium and its local
orbits to the other and its local orbits preserving the exact time. The normal
forms are represntatives of the resulting equivalence classes. The drawback of
using smooth equivalence is that there are too many equivalence classes. So
one restricts one attention to smoooth equivalence of the lowest degree terms in
power series expansions of the systems about teir respective equilibria. A degree
d normal form of a system is a particularly simple system which is smoothly
equivalent through terms of degree d. The normal form may or may not deter-
mine the topolgical type of the equilibrium. But the cases where it does not are
usually of higher codimension in the class of systems. Arnold and Ilyashenko
[15] have given classification of all singular equilibria in codimensions one and
two. This leads to a classification of all bifurcations up to codimension two [16]
by adding the parameter to the state with j = 0.
A control system

&z = f(z,u),

where the state z is n dimensional and, for simplicity, the control u is one
dimensional, does not need a parameter to bifurcate. The equilibria z,u are the
solutions of the equation

0 = f(z,u).

Again this is n+1 equations in n unknowns so typically there is a one parameter
family of equlibria . = z.(u) where p is the set value of the control or of a
state.

The most widely used equivalence of control systems is smooth feedback
equivalance. Two control systems with equilibria

= f(z,u), 0= f(ze ue)

2=g(z,v), 0= g(ze,ve)

are smoothly feedback equivalent if there is a local diffeomorphism

= ¢(z)

v = k(z,u)

between the two systems at the equilibria.




This is too fine an equivalence, there are too many equivalence classes. We
might try for a coarser equivalence; two equilibria are closed loop, topologically
equivalent if there are continuous feedbacks

v = k(x)
= @)

such that the closed loop systems are topologically equivalent.

But this definition is not an equivalence relation (not transitive) and it ig-
nores the most important systems theoretic property of an equilibrium of a
control system, whether it is stabilizable by state feedback. Therefore we add
the requirement that the feedbacks locally asymptotically stabilize the systems.

A equilibrium of a control system is structurally stabilizable if it and all
nearby equilibria of all nearby systems are locally asymptotically stabilizable
by continuous feedbacks.

A control system is locally parameterically stabilizable at ze(pc), ue(ttc) if
there exists a continuous, parameterized feedback

u = k(z, p)

defined for all p near u, and z near z.(u.) which locally, asymptotically stabi-
lizes the system to z(u) .

A control bifurcation [8] occurs at an equilibrium z., u, which is not locally
parameterically stabilizable.

Perhaps this should be called "stabilizability bifurcation” but this terminol-
ogy is too awkward. '

In practice, control bifurcations occur when the linear part of the system
loses stabilizability. But this is not always true, here is a system which loses
linear stabilizability but does not experience a control bifurcation,

& = —uly — 13
where z € IR, u € IR. This system has a locus of equilibria given by ze = 0, u. =
p. For any p # 0 the equilibrium is linearly stable hence linearly stabilizable.
At p = 0 the system is not linearly stabilizable but is nonlinearly stable hence
nonlinearly stabilizable so there is no control bifurcation.
On the other hand, a system can experience a control bifurcation without a
change in its linear stabilizability, here is an example.

=+ zU

where z € IR, u € IR. This system has a locus of equilibria given ze = 0,u, = ¢
and is not linearly stabilizable for any p. For any g < —1, the equilibrium is
stabilizable by the feedback u = k(z, 1) = p. But it is not stabilizable to the
equilibria where u > —1 so it undergoes a control bifurcation at g = —1.

If a control system is locally parameterically stabilizable then any other
system that is smoothly feedback equivalent to it is also locally parameteri-
cally stabilizable. We have developed a theory of normal forms (relative to the
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smooth feedback group) and they are very useful in classifying the simplest ways
a control bifurcation can happen [22], [23], [24], {8]. There is a close correspon-
dence between the simplest classical and control bifurcations. Very often when
the loop is closed around a system with a control bifurcation the result is an
inevitable classical bifurcation in the closed loop dynamics.

We have classified all control bifurcations in codimensions one and two, see
[20], [21], [1], [2], [7), [6), [23], [24], (8], [11], [26]. The complete classification
will appear in [10]

We start with systems

z = f (.’1) ) u)
with a scalar control u. The simplest control bifurcation is the fold [8]. It is the
only codimension one contro! bifurcation. Its normal form is
i = az +yTiTa + 65, 4 O(z,u)?
By = Azs+ Bou+ O(z,u)?
where z; € R, z; € IR™! Without loss of generality, we can assume that
Aj, B, are in Brunovsky form and a > 0,7 > 0,6 >0

The equilibria of this system can be parameterized by the first component
Zq1 of o which we denote by u. Then the equilibria near p = 0 are given by

oi(p) = —§u2+0(#)3

za(p) = p

zoi(p) = OW? i=2,...,n-1
ulp) = O

The linearization around pt* equilibrium in displacement coordinates
z=z—z(p) v=u—u(y)

is given by

. oty | 24 0 ... 0 2
2 = ([ 0 i " +0(p)*) 2z

0 2
+ ([ B, ] + O(u) )v,
To leading order in p this is a parameterized family of linear systems
2= A(p)z + Bv + O(p)?

whose controllability matrices are

[ A~-'B...B | = [ zg" ?]+O(u)2.
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Notice that the determinant of the controllability matrix changes sign at u = 0.
This is a manifestation of the control bifurcation. The effect of the integrated
control action on z; reverses direction at p = 0.

Suppose we try to close the loop by a continuous parameterized feedback
u = k(z, p) so that for each small y, the closed loop system

& = fz,5(z,p)

is asymptotically stable to z(u).
If the feedback is smooth then in displacement coordinates it takes the form

v=Ki(p)z1 + Ka(p)za + ...

The linear part of the resulting closed loop systein at the pt? equilibrium is

. o+ye | 26u 0 ... 0 2
2= ([ Bk | At EK ) TOW)*

and so the closed loop system undergoes a classical fold bifurcation near p = 0.

The next simplest bifurcation is of codimension two and is called the trans-
critical control bifurcation [8]. It is also called the transcontrollable bifurcation.
Its normal form is

& = P4z + 6z, + O(:z:,u)3
.’i:g = A2£C2 + Bzu + O(z,u)2

where again z;,u € R, x93 € IR™ ! and A,, B, are in Brunovsky form. It can
be seen as a degenerate form of the fold control bifurcation where o = 0. When
a = 0 there is an extra term in the normal form, Bz? that cannot be eliminated
by the feedback group.

The generic case is when the quadratic form z2 + yz1z2; + 623, is nonde-
generate. If this form is sign definite then z; = 0,72 = 0,u = 0 is an isolated
equilibrium. If it takes on both positive and negative values then there are two
curves of equilibria crossing at z; = 0,22 = 0,u = 0. Each of these curves can
be parameterized by g = zo;. The linearization about any of these equilibria
is linearly controllable except at p = 0 where the curves cross. The controlla-
bility matrix changes sign at g = 0 on each branch of equilibria which is the
reason that this is called a transcontrollable bifurcation. If we again try to find
a parameterized feedback u = k(z, 1) so that for each small p, the closed loop
system

z = f(.’E,H(.’l?,}L))

is asymptotically stable to the equilbria on one branch then typically there is a
classical transcritical bifurcation in the closed loop system.

We have also discovered nonlinear ways of stabilizing these bifurcations
where linear methods fail. Both the fold and transcontrollable bifurcations can
be put in the normal form ‘

i = az;+ Pz +y21291 + 622, + O(z,u)?
By = Azy+ Bou+ O(z,u)?



In either case there is an exchange of controllability at x = 0 so we choose the
piecewise linear feedback
u= Kjz, + Kozy

where K; = Kli as £z, > 0 and A3+ B3 K> is Hurwitz. Then the z, coordinate
is stable in the first approximation so we need only worry about the stability of
z1. If & < 0 the there is no control bifurcation as z; is also stable in the first
approximation and there is nothing more to do, we can set K f: =0.

If & > 0 then there is a control bifurcation and we must choose K ¥ ap-
propriately. The reduction of the problem of stabilizing the overall system to
that of stabilizing a small number of coordinates, in this case one coordinate,
is reminscent of how the center manifold theorem is used to reduce the study
of the stability of an equilibrium of a higher dimensional ODE to the study of
the stability of the dynamics restricted to the center manifold. With support
from this grant we have developed the controlled center dynamics technique for
stabilizing the linearly unstabilizble part of the system.

Following [6] and [?], we seek a piecewise smooth, approximately invariant
manifold of the form

Ly
Ty = Li.’El -+ 0(131)2 = ) + 0(181)2
Ly,

for the closed loop dynamics. The approximately invariant manifold assumption

is that d d
e _yxl 2
TR L e + O(z)

or equivalently
(A2 + BgKg) L*xl + BzKliiL‘l = 0T).

This reduces to
KE = L;’:pg(a), 'Lf =L, i=2,...,n-1

where p,(s) is the characteristic polynomial of the Hurwitz matrix Az + Bz K.
Since a > 0, p2(a) # 0 so we can parameterize the first part of the feedback by
LF instead of KE.

The dynamics on this manifold is

i = oz + (B +vLE + 8(LF)?) 22 + O(2)®

First we consider the transcontrollable bifurcation where a = 0. By assumption
the quadratic 8 + yLE + 8(LE)? takes on both positive and negative values as
L varies. So we choose L¥ so that '

£ (B+vLE +6(LF)%) <0

and we have locally stabilized z,. The stability of the overall system follows
from Lyapunov arguments.



For a fold control bifurcation where a > 0, we certainly cannot achieve
asymptotic stability. But if a is small enough we can achieve practical stabil-
ity. Without loss of generality, 8 = 0. We choose small L} so that az, +
(vLT + 86(L})?) 22 has a small positive root 7. Then this is a locally stable
equilbrium. Similarly we choose small L] so that az; + (yL7 +6(L7)?) 3
has a small negative root z;. This is also a locally stable equilbrium and so
locally z; goes to either xf. This is called practical stabilizability as we can
choose L¥ to make these two stable equilibria z¥ close to z, = 0. We have not
stabilized to z; = 0, this is impossible as a > 0, but we have stabilized to a
small neighborhood of it, [z7,z7]. Again the practical stability of the overall
system follows from Lyapunov arguments [6].

The above analysis analogous to the stability analysis of an equilibrium of an
ODE using the center manifold theorem. The method of the controlled center
dynmaics is a way for stabilizing (or practically stabilizing) a control system
that are not linearly stabilizable. First one uses linear feedback to stabilize the
linearly controllable modes and then one uses invariant manifold techniques to
study the stabilizability of the reduced system consisting of the linearly unstable
and uncontrollable modes.

The fold is the only codimension one control bifurcation of a scalar input
system. The transcontrollable bifurcation is of codimension two. The other
control bifurcations of codimension two are as follows.

For a scalar input system there are two and they both involve a system with
two linearly unstabilizable modes at some critical equilibrium. They differ in the
linear part of the unstabilizable modes. The first has two real, distinct positive
eigenvaues and second has a complex conjugate pair of eigenvalues with positive
real part. The latter is sometimes called the Hopf control bifurcation [§] but
perhaps this term should be reserved for the codimension three case when the
real parts of the eigenvalues are zero.

Other higher codimension control bifurcations of scalar input systems are
where one or both of the real uncontrollable eigenvalues are zero and where
the eigenvalues of the uncontrollable linear part are the same and its Jordan
form is not diagonal. Even higher codimension cases include the case where the
eigenvalues of the uncontrollable linear part are the same and its Jordan form
is diagonal and where the eigenvalues are zero.

There is one codimension two control bifurcation of multi-input systems. It
is a double fold.

If there is more than one input then a control bifurcation usually takes
place at an equilibrium where the controllablity (Kronecker) indices change.
For example if the dimension of the state is n = 2k and the dimension of
the control is m = 2 then generically the controllability indices are {k,k}. A
codimension one control bifurcation takes place when the controllability indices
become {k + 1,k — 1}.
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